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Abstract-This paper proposes appropriate conjugate parameters, dimensionless coordinates and tem- 
peratures to analyze the conjugate problems of heat conduction in solid walls coupled with laminar free 
convection flows adjacent to vertical and horizontal flat plates. The obtained finite-difference solutions are 
uniformly valid over the entire thermo-fluid-dynamic field for fluids of any Prandtl number between 0.001 
and infinity. The variations of the local heat transfer rates as well as the interface temperatures and frictions 
along the plates are shown explicitly. Typical velocity and temperature profiles in the boundary layers are 
presented. Very comprehensive and accurate correlations of the local Nusselt numbers are also presented 

and are compared with the reported correlation equations for the vertical case. 

1. INTRODUCTION 

CONJUGATE problems of conduction and free con- 
vection along a vertical flat plate have received con- 
siderable attention [l-7]. The early theoretical and 
experimental works of conjugate free convection have 
been reviewed in refs. [4, 51. 

Recently, Pozzi and Lupo [7l have obtained an initial 
expansion solution and improved the asymptotic 
expansion solution of Timma and Padet [6] by adding 
higher order terms. The initial and asymptotic expan- 
sions were based on the features of conjugate prob- 
lems that the thermo-fluid-dynamic fields near the 
leading- and the trailing-edge of the plate are that of 
the constant heat flux and the constant temperature 
cases, respectively [7]. These features of conjugate 
problems have been confirmed by the authors [8] using 
a scale analysis on the heat flux continuity equation 
at the solid-fluid interface. 

In this paper, we propose new conjugation par- 
ameters and novel dimensionless coordinates and tem- 
peratures to solve the conjugate free convection on a 
vertical plate. The definitions of these variables reflect 
the conjugate problem as a hybrid system of ordinary 
free convection with constant wall temperature and 
that with constant wall heat flux. ,411 of the defined 
dimensionless variables are appropriate over the 
entire thermo-fluid-dynamic field for fluids of any 
Prandtl number between 0.001 and infinity. For the 
extremely large and small values of conjugation par- 
ameter, the variables and the transformed nonsimilar 
equations of the conjugate-free. convection are readily 
reducible to those of the ordinary free convection with 

t Author to whom all correspondence should be addressed. 

boundary conditions of constant wall heat flux and 
constant wall temperature, respectively. From the 
physically more strict analysis, we are able to obtain 
very accurate finite-difference solutions over the entire 
regions of conjugation parameter and Prandtl 
number. Moreover, a very simple, but very com- 
prehensive and accurate, correlation of the local Nus- 
selt number can be derived in terms of the proper 
dimensionless variables. 

The conjugate free convection over a horizontal flat 
plate is also studied in this paper by a similar pro- 
cedure of analysis. To the knowledge of the authors, 
this conjugate problem has never been reported. 

2. SYSTEM EQUATIONS 

The schematic diagrams and coordinate systems for 
the conjugate problems of a vertical and a horizontal 
flat plates are shown in Figs. I (a) and (b), respectively. 
The inner surface of each plate is kept at a constant 
temperature T,,. Outside the plate, there is the qui- 
escent ambient fluid at a lower constant temperature 
T,. Heat is transferred steadily by conduction in the 
solid wall coupled with free convection in the fluid. As 
had been pointed out in ref. [5], axial heat conduction 
in the flat plate is insignificant. Consequently, the 
temperature profile in the plate can be assumed to be 
linear [6, 71. 

In the conjugate problems, conduction and con- 
vection are coupled by the heat flux continuity con- 
dition at the solid-fluid interface [6, 71 

= k,( T,, - T,,)/b. (1) 

Unlike the ordinary free convection, the interface tem- 
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NOMENCLATURE 

plate thickness 
reduced stream function 
gravitational acceleration 
local heat transfer coefficient 
thermal conductivity 
local Nusselt number, h.x/k, 
pressure 
Prandtl number 
heat flux 
UT,- Tm,)lb 
h(T,-7-x) 
local Rayleigh number, ,qfl(qhs/kr)r3/av 
local Rayleigh number.@( T,- T,)x3/av 
temperature 
temperature at the inner surface of the 
plate 
dimensionless temperature, 
CT-T,MT,-T,) 
velocity component in x-direction 
velocity component in v-direction 
coordinate parallel to the plate 
dimensionless group defined by equation 
(76) 
coordinate normal to the plate 
NulNuh 

Greek symbols 

; 
thermal diffusivity 
thermal expansion coefficient 

6 thermal boundary layer thickness 

conjugation parameter, (k,b/k,x)l 
dimensionless coordinate, (,v/.Y)~ 
dimensionless temperature 
CT- T,)l(Ti,- Tm)+ 
[CT-- T,)/(qh-~lkr)l(~Rah)” 
with n = l/5 for verlical plate and 
n = l/6 for horizontal plate 
[(aRa,)- ’ + (aRa,,-““I- ‘I4 for vertical 
plate and [(aRa,)- ‘+(cTR~,)-~‘“]-“~ 
for horizontal plate 
kinematic viscosity 
dimensionless x-coordinate, 
[I + aRa,/(aRa,,)“‘5]- ’ for vertical 
plate and [I +oRa,/(aRa,)s’6]-’ for 
horizontal plate 
fluid density 
Pr/(l +Pr) 
shear stress 
angle of inclination measured from the 
horizontal 
stream function 
dimensionless pressure, OJLY’/~W~“. 

Subscripts 
f fluid 
h case of constant wall heat flux 
S solid wall 
t case of constant wall temperature 
0 at the solid-fluid interface 
a, beyond the boundary layer. 

(al Vertical plate ib) Horizontal plate 

FIG. 1. Schematic diagram and coordinate system of the conjugate problems : (a) vertical plate, and (b) 
horizontal plate. 
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peraturer,(r) in conjugate-free convection is not 
known a priori but depends on the location and the 
intrinsic properties of the system as well as the tem- 
perature difference (T,, - T, ). 

The interface temperature can be determined from 
the following laminar boundary-layer equations 

(2) 

O= -!dp+gfi(T-T,)cos$ 
P a)! 

dT aT a2T 
“jy +“F = as’ 

(4) 

(5) 

For a horizontal plate, the angle 4 to the horizontal 
is 0, while for a vertical plate. 4 = n/2. In addition, 
ap/S.u and Sp/il,* are equal to zero for a vertical plate. 
In formulating equations (2)-(5). viscous dissipation 
and compression work have been neglected. More- 
over. physical properties of the fluid are assumed to be 
constant except for the density variation that induces 
the buoyancy force. 

Equations (2)-(5) are subjected to the boundary 
conditions of equation (I) and 

u=O, u=O, at y=O; (6) 

u=O. p=O, T=T,, as y-*00. (7) 

3. VARIABLES AND FORMULATIONS FOR A 
VERTICAL PLATE 

From a scale analysis on equation (I). we have 

where the thermal boundary layer thickness a(x) at 
the location x depends on the thermo-fluid-dynamic 
of the system. The conjugation parameter <, which 
controls the characteristics of the conjugate problems, 
is physically the ratio of the conduction resistance in 
solid to the convection resistance in fluid. 

For the extreme case of [ + 0, it yields To g T,, from 
equation (8). In this case, the thermo-fluid-dynamic 
field is that of the conventional isothermal plate flow. 
Therefore, one has [9] 

6,(x) - x(aRa,) - “4 (9) 

where 

0 = Pr/( I + Pr) (10) 

and the local Rayleigh number 

Ra, = g/9( T,, - T,)x’/u.v. (11) 

For the other extreme case of [ + co, equation (8) 
indicates that (TO - T,) << (T, - T,), and conse- 

quently ( Th- To) z (T,,- T,). In this case, the pre- 
sent conjugate problem reduces to the traditional free 
convection on a plate of constant wall heat flux, since 
equation (1) can be reduced to 

L( 
-k, CT 

0 a.v v=o 
= k,( T,, - T,)/b = constant. (12) 

The thermal boundary layer thickness for this extreme 
case scales is 

where 

5,(x) - x(crRa,)- If5 (13) 

Ra, = g,/l(q,,x/k,)x’/av (14) 

is the local Rayleigh number for a plate with constant 
wall heat flux 

qh = k(T,-T,)lb. (15)  

It is worth noting that 

RaJRa, = k,b/k,x. (16) 

The thermal boundary layer thickness of the con- 
jugate-free convection would be a combination of the 
thicknesses S, and 6, of the extreme cases. We propose 
that 

were 

6(x) - [a; + a;] “4 - x//l (17) 

A = [(oRa,)- ’ +(aRa,)-4’s]- “4. (18) 

From equations (8) and (17) the conjugation par- 
ameter for the conjugate-free convection on a vertical 
plate becomes 

[ = (k,b/k,x)L 

= (kfb/k,x)(oRa,) “4[ 1 + ~Ra,/(aRa,)~‘~] - “4 

= [(aRU,)5'4/aRUh][l +uRu,/(aRah)4’s]- “4. (19) 

Based on the foregoing analysis, we introduce the 
following dimensionless coordinates 

~(S.V) = v/m) = (Y/-en ml 

and 

r(x) = [I +aRa,/(~Ra,)“‘~]-‘. (21) 

In addition, we propose a novel dimensionless tem- 
perature 

T-T, 
&‘%q) = r,-r + x a =h 

T-T”( R )I/5 
I 

(22) 
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and a reduced stream function 

f(5, ‘?I = 4e,y)/ad. (23) 

The governing equations along with the boundary 
conditions for the vertical case are then transformed 
into 

Pr f “‘+ 

= :<(I -5) 1 (24) 

o"+ 
(25) 

&I((, 0) -(I - 5)““0’(5,0) = 1 06) 

.f’(L 0) = 0, f’(5,O) = 0 (27) 

.f’(s*, a3) = 0, O(<, co) = 0. (28) 

From equations (24)-(28), the local interface tem- 
perature U(<, 0) can be obtained numerically. The 
temperature gradient at the interface, O’(t, 0), can then 
be calculated from equation (26). The local Nusselt 
number, Nu = hx/k,, can be determined by 

Null = -O’(<,O)/O(<. 0) (29) 

or 

(30) 

It is worth mentioning that the preceding definitions 
of the key transformation variables A and 5 are not 
unique for the analysis of conjugate-free convection. 
However, by using the present definitions, the trans- 
formed equations, the expression of the local Nusselt 
number, and the derived correlation of the numerical 
results are the simplest ones in form. 

The dimensionless streamwise coordinate t(u) is also 
an alternative form of the conjugation parameter. It 
relates to < by 

i = (I -<)““/<. (31) 

For the limiting case of 5 = 0 (i + co), equations 
(24)-(26) and (29) are reduced to the following similar 
equations of the ordinary free convection on a plate 
of constant wall heat flux : 

Prf”‘+~fln-:f’f’+(l+Pr)B = 0 (32) 

w+;“fw- :f’o = 0 (33) 

P(O,O) = -1 (34) 

and 

Nu,/(aRa,) “’ = I/0(0,0). (35) 

For the other limiting case of 5 = I ([ = 0), the 
equations are reduced to 

Prf”‘+:flM-tflf’+(l+Pr)O = 0 (36) 

o”+:fo’ = 0 (37) 

O(l,O) = 1 (38) 

and 

Nu,/(aRa,)‘~“ = --o’(l,O). (39) 

Equations (36)-(39) are equivalent to the equations 
of the nonconjugate-free convection on an isothemral 
flat plate [9]. 

4. VARIABLES AND FORMULATIONS FOR A 
HORIZONTAL PLATE 

Following a similar procedure of the preceding 
analysis for the vertical plate, we propose 

2 = x/6(u) = [(aRa,)- ’ +(~Ru,)-~‘~]- ’ ’ (40) 

for defining the conjugation parameter [. the dimen- 
sionless coordinate ‘I, and the reduced stream function 
J(<, PI) of the conjugate-free convection on a hori- 
zontal Rat plate. The dimensionless s-coordinate and 
the dimensionless temperature for the horizontal plate 
are defined, respectively, as 

t(x) = [I +crRa,/(aR~,)~~~] - ’ (41) 

Moreover, a dimensionless pressure is defined as 

w(<, 9) = qJs’/pav/i”. (43) 

With these dimensionless variables, the trans- 
formed equations for the horizontal case are derived 
as 

+A (I+ Pr)[(5+5)@-(IO-445)w] 

=:<(I-<) /‘g-f”g+(l+Pr)$ 
[ ’ 1 (44) 

(46) 

5s(~,0)-(1-~)““0’(~,0) = I (47) 

./x&O) = 0, f’(5,O) = 0 (48) 

f’(Lo3) = 0, w(5. co) = 0, O(5. m) = 0. (49) 

In addition, the local Nusselt number for the hori- 
zontal case is related to 0(<, 0) by 
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Nu/i = -O'(<, Il)/O(<, 0) 

For the limiting case of 5 = 0, the nonsimilar equa- 
tions (44) and (46) as well as equations (47) and (50) 
are readily reduced to the following equations 

Pr.~+S~-Ij/Ifl+:(l+Pr)(rlW’-2w) = 0 (51) 

v+;fe’-:f’e = 0 (52) 

O’(O,O) = - I (53) 

and 

Nu,/(aRa,,) “’ = I/&0,0). (54) 

While for the other limiting case of 5 = I, the reduced 
equations are 

Pr~+:~-:fIf’+5(l+Pr)(rlw’-w) = 0 (55) 

o”+ Q-0 = 0 (56) 

O(I,O) = I (57) 

and 

Nu,/(uR~,)“~ = -H’(l,O). (58) 

5. NUMERICAL METHOD 

The set of nonsimilar equations (24)-(28) for the 
vertical case and that of equations (44)-(49) for the 
horizontal case are solved by Keller’s finite-differ- 
ence scheme known as the box method [lo]. The 
numerical integration was carried out step-by-step 
from 5 = 0 to 1 with uniform step size At = 0.01. 
However, the step size Arl and the edge of the bound- 
ary layer, ql, were varied with different Prandtl 
number for obtaining converged accurate solutions. 
We used variable step size Aq, = l.O2Ar1+, with 
Au0 = 0.002 for small Prandtl numbers (Pr < 0.1) and 
AqO = 0.005 for large Prandtl numbers (Pr 2 100). 
For moderate Prandtl numbers (Pr = 0.7 and 7), a 
uniform step size Aq = 0.05 was used. The edge of the 
boundary layer, vu, was taken as I2 for Pr < 0. I, I5 
for Pr = 0.7 and 7, and 50 for Pr 2 100. 

6. RESULTS AND DISCUSSIONS 

6. I. Velocity and temperature projiles 
Typical profiles of the dimensionless longitudinal 

velocity f’({, r~) = u/(~/x)A’ for Pr = 0.7 are shown 
in Figs. 2(a) and (b) for the vertical and the horizontal 
cases, respectively. As shown in these figures, the 
maximum velocity decreases as 5 increases from 0 to 
I. 

Typical profiles of the dimensionless temperature 
O({, 9) are presented in Fig. 3 for Pr = 0.7. The profiles 
of the traditional expression of dimensionless tem- 
perature [6, 71 

T* = T- T,. 
~ = m5. I) 
Th-T, 

(59) 

are plotted in Fig. 4. This figure shows clearly that the 
interface temperature increases from T,. at < = 0 to 
T,at 5 = I. 

Figures 24 also show a step-by-step variation of 
the dimensionless velocity and temperature profiles 
with 5. It is seen that these profiles develop from the 
profiles of the constant wall heat flux case (5 = 0) to 
those of the constant wall temperature case (5 = I). 

6.2. Interface temperature and shear stress 
Finite-difference solutions of the dimensionless 

interface temperature 0(<, 0) for various < and Pr 
are listed in Table I. The numerical results of the 
dimensionless velocity gradient at the solid-fluid 
interface, j”‘(<, 0). are listed in Table 2. These tables 
clearly show that O(<. 0) and .f”(t, 0) decrease as { 
increases. 

The accuracy of the present numerical results can be 
verified by comparing with the initial and asymptotic 
expansions of Pozzi and Lupo [7]. Comparisons are 
made in Fig. 5 for the dimensionless interface tem- 
perature 

G = (To-T,)l(T,-T-1 = 5&5>0) (60) 

and in Fig. 6 for the dimensionless friction at the 
interface, s0/p(av/x)Ra:‘4. As can be seen in these 
figures, the initial expansion solutions (I8 terms) 
coincide excellently with the present finite-difference 
solutions for large values of [ (small values of 5 or 
x). While the asymptotic expansion solutions (four 
terms) are in excellent agreement with our results for 
small values of [ (large values of 5 or s). The par- 
ameters m and m, in ref. [7] had been converted to [ 
by 

~=n7”“[Pr’/(l+Pr)]“S =m;‘[Pr’/(I+Pr)]“‘. 

(61) 

The variations of the dimensionless interface tem- 
perature 

T,-To -= l-T;= I-&‘(&O) 
T,-T, 

(6’3 

with respect to I/[ are presented in Fig. 7. It is seen 
that the interface temperature increases with decreas- 
ing 4’. As has also been indicated in Fig. 4, the interface 
temperature increases from T, as < -+ co(< = 0 or 
x = 0) to T,, at < = 0 (r = I, x/b + a). 

Figures 8(a) and (b) show the variations of the 
dimensionless interface frictions 

and 

To/p(av/x’)Ra:‘4 = (u<,“‘j-yi;, 0) (634 

To/p(av/x2)Ra:‘5 = (05) 3’5f”([, 0) (63b) 
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Table 1. Numerical results of 0 (5, 0) 

Pr 
5 0.001 0.01 0.1 0.7 7 100 ai 

(a) Verticalplate 
0 I .3345 
0.1 I .3364 
0.2 1.3321 
0.3 1.3206 
0.4 1.3007 
0.5 1.2717 
0.6 1.2335 
0.7 1.1865 
0.8 I.1319 
0.9 1.0705 
I.0 I .oooo 

(b) Horizontal piate 
0 I .2258 
0.1 1.2409 
0.2 1.251 I 
0.3 I .2549 
0.4 I .2504 
0.5 I .2361 
0.6 1.2103 
0.7 1.1728 
0.8 1.1245 
0.9 1.0671 
I.0 I .oooo 

I .3759 1.4824 1.6132 1.6520 1.6108 1.5868 
1.3731 I .4664 1.5783 1.6102 I .5745 1.5538 
I .3637 I .4430 1.5358 1.561 I 1.5310 1.5136 
1.3468 1.4116 1.4858 I .5049 I .4805 1.4664 
1.3215 .I .3721 1.4286 1.4424 I .4234 1.4124 
1.2872 I .3246 I .3652 I .3746 I .3606 1.3525 
I .2442 I .2698 1.2970 I .3029 I .2933 1.2877 
1.1932 I .2090 1.2255 I .2289 I .2229 1.2194 
1.1354 1.1436 I. I522 1.1538 1.1506 I 1488 
1.0718 I .0748 I .0778 1.0784 I .0772 1.0766 
I .oooo I .oooo I .oooo I .oooo I .oooo 1 .oooo 

I .2720 1.3944 
I .2826 1.3913 
I .2876 1.3814 
I .2857 1.3634 
1.2751 1.3364 
I .2546 I .2998 
1.223 I 1.2538 
1.1807 1.1993 
1.1285 1.1380 
1.0686 I .0720 
1 .oooo I .oooo 

I .5583 
I .5333 
I .5003 
I .4590 
I .4095 
1.3523 
I .2885 
I .2200 
1.1485 
1.0757 
1 .oooo 

1.6410 
I .6022 
I .5558 
1.5017 
I .4406 
I .3735 
1.3019 
I .2276 
1.1522 
I .0770 
1 .oooo 

1.6230 
I .5859 
1.5414 
I .4894 
I .4306 
I .3657 
I .2963 
1.2240 
1.1502 
I .0762 
1 .oooo 

1.608 I 
1.5729 
1.5302 
1.4802 
I .4233 
I .3603 
I .2926 
1.2216 
1.1490 
I .0758 
I .oooo 

for the vertical and horizontal plates, respectively. 6.3. Local heat transfer rates 
These figures reveal that the dimensionless interface In the conjugate problems, the local heat transfer 
frictions increase as [ decreases, or equivalently, as 5 rate cannot be evaluated from the calculated local 
or x increases. Nusselt number or heat transfer coefficient alone, 

Table 2. Numerical results of /“(<, 0) 

5 0.001 

(a) Verticalplale 
0 54.745 
0.1 55.050 
0.2 55.193 
0.3 55.136 
0.4 54.840 
0.5 54.268 
0.6 53.392 
0.7 52.199 
0.8 50.692 
0.9 48.869 
I.0 46.595 

(b) Horizontal plate 
0 47.166 
0.1 47.190 
0.2 47.051 
0.3 46.710 
0.4 46.125 
0.5 45.290 
0.6 44.098 
0.7 42.653 
0.8 40.984 
0.9 39.177 
1.0 37.289 

0.01 

16.929 5.2502 2.3123 I .5745 I .5248 
16.982 5.2335 2.2872 1.5537 1.5079 
16.981 5.1988 2.2542 I .5276 I .4861 
16.917 5.1440 2.2127 1.4960 1.4591 
16.778 5.0669 2.1625 1.4591 I .4267 
16.556 4.9664 2.1040 1.4171 1.3891 
16.245 4.8424 2.0377 1.3705 I .3467 
15.843 4.6961 1.9646 1.3199 I .3000 
15.353 4.5294 1.8859 1.2660 I .2494 
14.776 4.343 1 1.8018 1.2090 I.1951 
14.073 4.1270 1.7083 1.1460 1.1340 

14.549 4.5424 2.0205 
14.521 4.5068 1.9902 
14.439 4.4544 I .9529 
14.295 4.3832 1.9084 
14.077 4.2914 1.8569 
13.777 4.1786 I .7989 
13.393 4.0462 I .7356 
12.933 3.8977 1.6687 
12.415 3.7386 1.6000 
I 1.867 3.5750 1.5308 
11.301 3.4075 I .4603 

0.1 
Pr 

0.7 7 100 co 

I .3622 1.2958 I .2987 
I.3383 1.2754 I .2797 
1.3102 I.2513 I .2570 
1.2780 I .2235 I .2306 
I .2421 I.1921 I .2008 
1.2030 1.1578 1.1677 
1.1614 1.1209 1.1320 
1.1181 1.0822 I .0943 
1.0741 1.0423 I.0551 
1.0298 1.0015 1.0147 
0.9839 0.9584 0.9716 

1.5419 
I .5269 
1.5069 
1.4816 
I .4508 
1.4146 
1.3732 
I .3272 
1.2769 
1.2224 
1.1605 
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FIG. 5. A comparison of the dimensionless interface tem- 
perature along the vertical plate, Pr = 2.97. 

since the interface temperature is unspecified. The 
local heat transfer rate can be evaluated, only after 
O(<, 0) has been determined by 

= 4hP -T&5,0)1 (64) 

Figure 7 presents the variations of the dimen- 
sionless heat transfer rate q/qh with < and Pr. It is seen 
that the local heat transfer rate decreases as [decreases 
(5 or x increases). The decrease of the local heat 
transfer rate is due to the increase of the thermal 
boundary layer thickness. 

The local heat transfer rate can also be calculated 
from 

Y = NT,-Tm) 

= N+T,-T&W3) (65) 

; - Present 

l xnitfal expansion 

0 Asymptotic expansion 

FIG. 6. A comparison of the dimensionless interface friction 
along the vertical plate, Pr = 2.97. 

where the local Nusselt number can be calculated from 
equation (30) for the vertical case and from equation 
(50) for the horizontal case. It can also be estimated 
from the correlation equations presented in the next 
section. 

Equation (65) can be rewritten as 

where 

q/q, = lQ’(k O)/Q’(l, 0115 (66) 

qt = hG’-,- Tm) = N~,&lx)(T,-- Td (67) 

is the local heat transfer rate of the ordinary free 
convection on an isothermal plate. The local Nusselt 
number of an isothermal plate, Nu,, can be calculated 
from equation (39) for the vertical plate and equation 
(58) for the horizontal plate with 0’( 1, 0) reported in 
ref. [l 11. 

The heat transfer rate varies from an asymptote of 
q = qh to the other asymptote of q = q, as the con- 
jugate parameter [ varies from infinity to 0. For very 
small and large values of 5, the solutions of the ordi- 

lror1zonta1 plate 

Pr-0.001.0.01 

0.1 1 10 100 
l/C 

FIG. 7. Variations of the local heat transfer rate and the interface temperature. 
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Pr-0.001,0.01,0.1.0.7,7,~100--) Pr=0.001,0.01,0.1,0.7,7,,100--, 

I LI z 
if 8 
“It “8 
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5 P 
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d 

v.¶rtica1 place rrorlzontal plate 

FIG. 8. Variations of the dimensionless interface friction. 

nary free convection of constant wall temperature and 
constant wall heat flux, respectively, can be applied 
satisfactorily. Table 3 presents the regimes of the con- 
jugation parameter in which a convective system 
should be solved as a conjugate problem. Beyond 
these regimes, the free convection system can be 
approximated by the ordinary ones with error of heat 
transfer rate to be less than 5%. 

Table 3. The regimes of [ in which a free convection system 
should be solved as a conjugate problem 

Pr 

0.001 
0.01 
0.1 
0.7 
7 
100 
al 

Vertical Horizontal 

(0.087, 25.5) (0.146, 23.5) 
(0.089, 26.3) (0.148,24.3) 
(0.095, 28.3) (0.153, 26.7) 
(0.102, 30.8) (0.159, 29.8) 
(0.102, 31.6) (0.157, 3 1.4) 
(0.098, 30.7) (0.151,31.0) 
(0.096, 30.3) (0.148, 30.8) 

6.4. Local Nusselt number 
The local Nusselt number can be calculated from 

the numerical results of 0(<, 0) by using equations 
(30) and (50). Figure 9 shows that Null decreases 
almost linearly with increasing 5 for any Prandtl num- 
ber. This linear relationship should not be taken for 
granted but is a result of the proper definitions of 1 
and 5. The linear relationship between Null and r 
leads us to propose a simple correlation equation of 
the local Nusselt number for the conjugate-free con- 
vection on a vertical plate 

Null = <[Nu,/(aRa,) “4] + (1 - fj)[Nu,/(oRa,) “‘1 
(68) 

where Nu, and Nu, are the local Nusselt numbers 
of ordinary convective problems with constant wall 
temperature and constant wall heat flux, respectively. 
Very accurate (maximum error <OS%) correlation 
equations of Nu, and Nu,, have been proposed by the 
authors [12] as 

vertical plate 
h 
d 

< 
z 

(0 
d 

w 
d 

0 0.2 0.4 
5 

d I I I I 
0 0.2 0.4 0.6 0.8 1 

5 

FIG. 9. Variations of Null with & 
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l+Pr 1 114 
Nu,/(crRa,) ‘I4 = 0.502 

can be determined either from equation (64) or 
0.492 f0.986Pr “I + Pr equation (65). 

(69) 6.5. Comparisons of the correladon equations 

[ 

I+Pr 1 l/S 
Nu,,/(aRa,) “’ = 0.631 

For the vertical plate, a combination of equations 

0.396+0.918Pr”‘+Pr (30) (60), (64) and (68) yields 

(70) (~-CW~X=s/(qh-q) = 1[5A(pr)+(l-SP(Pr)l 
for 0.001 < Pr < co. (77) 

For a horizontal plate, the correlation equation is where A(Pr) = Nu,(aRa,)‘j4 and B(Pr) = Nu,/ 
proposed as (ORa,,) ‘/’ are given by equations (69) and (70), re- 

Nu/i, = <[Nu,/(aRa,) ‘“I+ (I - t)[Nu,,/(aRa,) ‘I”]. 
(71) 

The correlations of Nu, and Nub for the nonconjugate- 
free convection on a horizontal plate have been intro- 
duced [ 121 as 

l+Pr 1 l/S 
Nu,/(aRa,)“5 = 0.456 

0.313+0.856Pr”*+ Pr 

(72) 

l+Pr 1 116 
Nu,,/(aRa,,) I’6 = 

0.177+0.625Pr”*+Pr . 

(73) 

The maximum discrepancy of the correlation equa- 
tions (72) and (73) to the numerical data is less than 
0.5% for 0.001 < Pr < a. 

Equations (68) and (71) can be rewritten as 

Y=X (74) 

where 

and 

Y = NulNu, (75) 

x= (l-5)“” Nu,/(aRa) ‘I4 5Nuh,(oRa),,5 +(1--t) 1 (764 
for a vertical plate, or 

x= (1-5)“5 
Nu,/(cRa) Iis 

tNu ,(aRa),,6+(I-r) 1 (76b) h 
for a horizontal plate. 

Figures IO(a) and (b) compares the proposed cor- 
relations and the numerical data for the vertical and 
the horizontal cases, respectively. These figures have 
revealed excellent agreement between the correlations 
and the numerical results. For the case of a vertical 
plate, the maximum deviation is less than 2.8% for 
0.001 < Pr < co. While for a horizontal plate, the 
maximum discrepancy is less than 3% for 0.001 < 
Prdm. 

The correlation equations (68) and (71) of the local 
Nusselt numbers provide for the estimations of the 
dimensionless temperature 0(& 0) by using equations 
(30) and (50) for the vertical and horizontal cases, 
respectively. Eventually, the local heat transfer rate 

spectively. 
An implicit correlation equation of dimensionless 

temperature at the interface had been introduced by 
Miyamoto et al. [5], which can be converted in our 
notation as 

7’; = [I +0.482 (I’r4T$‘141’ (78) 

for Pr = 0.7. Another correlation equation of the 
local Nusselt number was reported by Timma and 
Padet [6]. After converting to our notation, their cor- 
relation becomes 

TZ= I-C, (y>“” (,,;;ypJ” (79) 

where C, was listed in Tables I and 2 of [6], which 
depends weakly on the Grashof number, the Prandtl 
number, the conductivity ratio k,/kr, and the ratio of 
the plate length to the wall thickness. 

The correlation equations (78) and (79), with C, 
was taken as 0.473 [6], are compared in Fig. I I with 
our correlation equation (77) and numerical results 
for Pr = 0.7. The comparisons reveal that the cor- 
relation of Miyamoto et al. [5] is in good agreement 
with our numerical results and correlation. As 
expected, the correlation of Timma and Padet [6] from 
an asymptotic expansion solution is coincident with 
the present results for small values of [ but not for 
large ones. 

7. CONCLUSIONS 

In this paper, we have analyzed the conjugate prob- 
lems of conduction and free convection on vertical 
and horizontal flat plates. The horizontal case has 
not been studied previously. We used a new analysis 
method developed from a straight insight into the 
main features of the conjugate-free convection 
problems. 

The present finite-difference solutions have been 
proved to be very accurate by the comparisons of 
the obtained dimensionless interface temperature and 
friction with the reported series expansion solutions 
for the vertical plate case. The finite-difference solu- 
tions are valid uniformly over the entire thermo-fluid- 
dynamic field for 0.001 < Pr ,< 03. We have extended 
the solutions to the small values of Prandtl number 
and to the region where the resistances of the wall 
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FIG. IO. A comparison between the correlated and the calculated local Nusselt numbers. 

REFERENCES 
- Present numerical resu1f.s 

l Present correlarion 

0 Correlation of niyamoto et al. 

A Correlation of Timna 6 Pad& 

FIG. Il. Comparisons of the correlation equations for the 
conjugate-free convection on a vertical plate. 

conduction and the free convection boundary layer 
are comparable in magnitude. 

For convenience of engineering applications, very 
accurate correlation equations of the local Nusselt 
numbers had been derived. From these correlations, 
the local interface temperature and heat transfer rate 
can be estimated. 
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